Files
Beancount-importer/postbank_csv_importer.py
2025-08-12 18:59:39 +00:00

164 lines
6.5 KiB
Python

from beancount.ingest import importer
from beancount.core import data
from beancount.core.number import D
import csv
import datetime
class MyCSVImporter(importer.ImporterProtocol):
"""A Beancount importer for CSV files"""
def identify(self, file):
return file.name.endswith('.csv')
def file_account(self, file):
return "Assets:Bank:PostbankGiro"
def file_date(self, file):
"""Returns the unique date of the file, if any."""
# Optioneel: als je bestandsnaam een datum bevat
return None
def file_name(self, file):
"""Returns the unique name of the file, if any."""
# Optioneel: als je een unieke naam wilt baseren op het bestand
return None
def extract(self, file, existing_entries=None):
"""Extracts entries from a files."""
entries = []
# file.contents
with open(file.name, encoding='utf-8') as f:
csv_reader = csv.reader(f, delimiter=';')
# Gebruik enumerate() om een teller (index) te krijgen
for index, row in enumerate(csv_reader):
if len(row) < 18 or row[17] != "EUR":
continue
# De index begint bij 0, dus de 12e kolom is index 11.
# Boekingsdatum = index 0
# Ontvanger = index 3
# Omschrijving = index 4
# Bedrag = index 11
# Valuta = index 17
datum_str = row[0]
ontvanger = row[3]
omschrijving_str = row[4]
bedrag_str = row[11]
valuta = row[17]
dag, maand, jaar = datum_str.split('.')
transactie_datum = datetime.date(int(jaar), int(maand), int(dag))
payee = ontvanger
narration = omschrijving_str
# Verwijder eerst de duizendtallen-scheidingstekens (de punten)
bedrag_str = bedrag_str.replace('.', '')
# Vervang daarna de komma door een punt
bedrag_str = bedrag_str.replace(',', '.')
bedrag = D(bedrag_str)
currency = valuta
meta = data.new_metadata(file.name, index)
# Bepaal of het een inkomst of uitgave is op basis van het voorteken van het bedrag.
if bedrag < D(0):
# Uitgave: bedrag is negatief.
# Geld gaat van de bankrekening naar een uitgavenrekening.
tegenrekening = self._map_payee_to_account(payee + " " + omschrijving_str)
#FORMAT: data.Posting(account, units, cost=None, price=None, flag=None, meta=None)
postings = [
#data.Posting(self.file_account(file), bedrag, currency, None, None, None),
data.Posting(self.file_account(file), data.Amount(bedrag, currency), None, None, None, None),
#data.Posting(tegenrekening, -bedrag, currency, None, None, None),
data.Posting(tegenrekening, data.Amount(bedrag, currency), None, None, None, None),
]
else:
# Inkomsten: bedrag is positief.
# Geld gaat van een inkomstenrekening naar de bankrekening.
tegenrekening = self._map_payee_to_account(payee + " " + omschrijving_str)
#FORMAT: data.Posting(account, units, cost=None, price=None, flag=None, meta=None)
postings = [
#data.Posting(tegenrekening, -bedrag, currency, None, None, None),
data.Posting(tegenrekening, data.Amount(-bedrag, currency), None, None, None, None),
#data.Posting(self.file_account(file), bedrag, currency, None, None, None),
data.Posting(self.file_account(file), data.Amount(bedrag, currency), None, None, None, None),
]
transaction = data.Transaction(
meta=meta,
date=transactie_datum,
flag='*',
payee=payee,
narration=narration,
tags=frozenset(),
links=frozenset(),
postings=postings
)
entries.append(transaction)
return entries
def _map_payee_to_account(self, payee):
mapping = {
#INCOME postings
"Lohn": "Income:Salaris",
"Gehalt": "Income:Salaris",
"Landkreis Meissen":"Income:BasicIncome",
#EXPENSES postings
"Miete": "Expenses:Rent",
"Sachsen":"Expenses:Electricity",
"Kontoführung":"Expenses:Banking",
"AMAZON":"Expenses:Subscriptions",
"Allianz":"Expenses:Insurance",
"Autohof":"Expenses:Driving",
"Tankstelle":"Expenses:Driving",
"ESSO":"Expenses:Driving",
"ARAL":"Expenses:Driving",
"Yellowbrick":"Expenses:Driving:Parking",
"PH":"Expenses:Driving:Parking", # Narrow down
"eBay":"Expenses:Gadgets", # Differentiate
"MEDIA MARKT":"Expenses:Gadgets",
"Logic Pro":"Expenses:Gadgets",
"Thomas Klotsche":"Expenses:Household",
"POCO":"Expenses:Furniture",
"Tapete":"Expenses:Furniture",
"Deutsche Post AG":"Expenses:Postdelivery",
"Echtzeitüberw":"Expenses:Banking",
"Apotheke":"Expenses:Drugs",
"ALDI":"Expenses:Food",
"Lidl":"Expenses:Food",
"Bosch":"Expenses:Food", #BOSCH catering
"TRANSGOURMET":"Expenses:Food",
"Netto Marken":"Expenses:Food",
"Rewe":"Expenses:Food",
#Creditcards
"AMERICAN EXPRESS":"Expenses:Creditcard",
"CONSORS":"Expenses:Creditcard",
#SAVINGS postings
"Bitpanda":"Assets:Savings:Trade"
#DEBTS
#"111649731":"Debts:Basic income",
# Actually booked from Dutch Account
#"Duo studieschuld":"Debts:Student loan (NL)",
#"DUO Studienschuld":"Debts:Student loan (NL)",
#"Bundeskasse Halle":"Debts:Student loan (DE)"
}
for sleutelwoord, rekening in mapping.items():
if sleutelwoord.lower() in payee.lower():
return rekening
return "Expenses:Uncategorized"